Wasserstein Distributionally Robust Motion Control for Collision Avoidance Using Conditional Value-at-Risk

نویسندگان

چکیده

In this article, a risk-aware motion control scheme is considered for mobile robots to avoid randomly moving obstacles when the true probability distribution of uncertainty unknown. We propose novel model-predictive (MPC) method limiting risk unsafety even obstacles’ movements deviates, within an ambiguity set , from empirical obtained using limited amount sample data. By choosing ambiguity set as statistical ball with its radius measured by xmlns:xlink="http://www.w3.org/1999/xlink">Wasserstein metric we achieve probabilistic guarantee xmlns:xlink="http://www.w3.org/1999/xlink">out-of-sample risk evaluated new data generated independently training To resolve infinite-dimensionality issue inherent in distributionally robust MPC problem, reformulate it finite-dimensional nonlinear program modern optimization techniques based on Kantorovich duality principle. find globally optimal solution case affine dynamics and output equations, spatial branch-and-bound algorithm designed McCormick relaxation. The performance proposed demonstrated analyzed through simulation studies dynamic kinematic vehicle models linearized quadrotor model. results indicate that, size small, can successfully out-of-sample risk, while average approximation counterpart fails do so.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

Distributionally Robust Reward-risk Ratio Programming with Wasserstein Metric

Reward-risk ratio (RR) is a very important stock market definition. In order to capture the situation that the investor does not have complete information on the distribution of the underlying uncertainty, people extend RR model to distributionally robust reward-risk ratio (DRR) model. In this paper, we study the DRR problem where the ambiguity on the distributions is defined through Wassertein...

متن کامل

Distributionally robust discrete optimization with Entropic Value-at-Risk

We study the discrete optimization problem under the distributionally robustframework. We optimize the Entropic Value-at-Risk, which is a coherentrisk measure and is also known as Bernstein approximation for the chanceconstraint. We propose an efficient approximation algorithm to resolve theproblem via solving a sequence of nominal problems. The computationalresults show...

متن کامل

Distributionally Robust Stochastic Optimization with Wasserstein Distance

Distributionally robust stochastic optimization (DRSO) is a robust approach to stochastic optimization problems in which the underlying distribution is not known exactly. It seeks a decision which hedges against the worst-case distribution in an ambiguity set, containing a family of distributions relevant to the considered problem. Unfortunately, the worst-case distributions resulting from many...

متن کامل

Wasserstein distance and the distributionally robust TSP

Recent research on the robust and stochastic travelling salesman problem and the vehicle routing problem has seen many different approaches for describing the region of ambiguity, such as taking convex combinations of observed demand vectors or imposing constraints on the moments of the spatial demand distribution. One approach that has been used outside the transportation sector is the use of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Robotics

سال: 2022

ISSN: ['1552-3098', '1941-0468', '1546-1904']

DOI: https://doi.org/10.1109/tro.2021.3106827